On the Effectiveness of a NSGA-II Local Search Approach Customized for Portfolio Optimization
نویسندگان
چکیده
Bi-objective portfolio optimization for minimizing risk and maximizing expected return has received considerable attention using evolutionary algorithms. Although the problem is a quadratic programming (QP) problem, the practicalities of investment often make the decision variables discontinuous and introduce other complexities. In such circumstances, usual QP solution methodologies can not always find acceptable solutions. In this paper, we modify a bi-objective evolutionary algorithm (NSGA-II) to develop a customized hybrid NSGA-II procedure for handling situations that are non-conventional for classical QP approaches. By considering large-scale problems, we demonstrate how evolutionary algorithms enable the proposed procedure to find fronts, or portions of fronts, that can be difficult for other methods to obtain. In addition, post-optimality analyses are performed to reveal salient properties of optimal solutions that can remain as vital knowledge to a practitioner.
منابع مشابه
Bi-objective Portfolio Optimization Using a Customized Hybrid NSGA-II Procedure
Bi-objective portfolio optimization for minimizing risk and maximizing expected return has received considerable attention using evolutionary algorithms. Although the problem is a quadratic programming (QP) problem, the practicalities of investment often make the decision variables discontinuous and introduce other complexities. In such circumstances, usual QP solution methodologies can not alw...
متن کاملOptimization of Bank Portfolio Investment Decision Considering Resistive Economy
Increasing economy’s resistance against the menace of sanctions, various risks, shocks, and internal and external threats are one of the main national policies which can be implemented through bank investments. Investment project selection is a complex and multi-criteria decision-making process that is influenced by multiple and often some conflicting objectives. This paper studies portfolio inve...
متن کاملComparison of Portfolio Optimization for Investors at Different Levels of Investors' Risk Aversion in Tehran Stock Exchange with Meta-Heuristic Algorithms
The gaining returns in line with risks is always a major concern for market play-ers. This study compared the selection of stock portfolios based on the strategy of buying and retaining winning stocks and the purchase strategy based on the level of investment risks. In this study, the two-step optimization algorithms NSGA-II and SPEA-II were used to optimize the stock portfolios. In order to de...
متن کاملCustomized Evolutionary Optimization of Compliant Mechanism to Generate Multiple Light Weight Topologies
The present work focuses on evolving the multiple light-in-weight topologies of compliant mechanism tracing user defined path. Therefore in this paper, the bi-objective set is formulated first on the optimization frame-work in which the helper objective of maximum diversity is introduced with the primary objective of minimum weight of elastic structures. Thereafter, the evolutionary algorithm (...
متن کاملMulti-objective Scatter Search with External Archive for Portfolio Optimization
The relevant literature showed that many heuristic techniques have been investigated for constrained portfolio optimization problem but none of these studies presents multi-objective Scatter Search approach. In this work, we present a hybrid multi-objective population-based evolutionary algorithm based on Scatter Search with an external archive to solve the constrained portfolio selection probl...
متن کامل